In this script we will visualize the output from the model at various stages. We will also plot visualize the learned convolution filters. Most importantly we will see the features extracted from the image become more and more abstract as the image passes on down the deep network.
Here, we will use the model trained in the previous example - https://jaydeepsb.github.io/deepdive/projects/CNN_cats_Vs_Dogs/cats_Vs_dogs_CNN.html The notebook, and the model can be found on my Github page - https://github.com/jaydeepsb/deepdive/tree/master/projects/CNN_cats_Vs_Dogs
import os
import pathlib
import numpy as np
import pylab as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import model_from_json
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import Model
#Write twice, because sometimes it does not work the first time, especially if you are switching back to notebook
%matplotlib notebook
%matplotlib notebook
You may load VGG16 model to visualize its intermediate layers. Instead of VGG16 I will use my own trained model as in the below section.
from tensorflow.keras.applications.vgg16 import VGG16
# load the model
loaded_model_vgg16 = VGG16()
loaded_model_vgg16.summary()
We will use our previous example Cats vs Dogs and load the trained model. Load mdoel structure from .json file as well as the weights from .h5 file. Model can be found on my github page. Download and set a correct path to the folder.
current_working_dir = os.getcwd()
files = os.listdir(os.path.join(current_working_dir, 'CatsAndDogs','model','best_model_v2'))
for f in files:
if f.endswith('h5'):
modelfname = f
if f.endswith('json'):
modelstruct = f
print(modelfname)
print(modelstruct)
# load json and create model
json_file = open(pathlib.Path(os.path.join(current_working_dir, 'CatsAndDogs','model','best_model_v2',modelstruct)), 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights(pathlib.Path(os.path.join(
current_working_dir, 'CatsAndDogs', 'model', 'best_model_v2', modelfname)
)
)
print("Loaded model from disk")
print(loaded_model.summary())
# evaluate loaded model on test data
#loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
First reshape the image to match the input shape of the model.
new_img_size = loaded_model.input_shape[1:3]
new_img_size
class_names = ['Cat', 'Dog']
img_name = r"Coronavirus-and-Cats-Science-Roundup-Catipilla.jpg"
img_file_path = os.path.join(current_working_dir, 'CatsAndDogs','online_test_images',img_name)
#img_file_path = r"/CatsAndDogs/online_test_images/Coronavirus-and-Cats-Science-Roundup-Catipilla.jpg"
img = keras.preprocessing.image.load_img( img_file_path, target_size=new_img_size)
img_array = keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, 0) # Create batch axis
predicted_class = loaded_model.predict_classes(img_array)[0]
predictions = loaded_model.predict(img_array)
score = predictions[0]
print("Prediction: ",class_names[predicted_class[0]])
print("Score: ", np.round(score,2))
plt.figure()
plt.imshow(img)
plt.title(class_names[i])
plt.axis("off")
Grab the first convolutional layer. We have 16 filters of shape 3x3, for each RGB color channels. i.e. total 16 x 3 fitlers of shape 3x3. We will plot these filters, each color channel in a new column
print("Total layers: ", len(loaded_model.layers))
print("Convolutional layers: Name, shape")
for i,layer in enumerate(loaded_model.layers):
# check for convolutional layer
if 'conv' not in layer.name:
continue
# get filter weights
filters, biases = layer.get_weights()
print("Index: ", i, "| Name of the layer: ", layer.name, "| Shape: ", filters.shape)
Grab first convolutional layer, indexed 3, get the weights, normalize the values to 0-1 range.
# retrieve weights from the second hidden layer
filters, biases = loaded_model.layers[3].get_weights()
# normalize filter values to 0-1 so we can visualize them
f_min, f_max = filters.min(), filters.max()
filters = (filters - f_min) / (f_max - f_min)
# plot first few filters
n_filters, ix = 16, 1
plt.figure()
for i in range(n_filters):
# get the filter
f = filters[:, :, :, i]
# plot each channel separately
for j in range(3):
# specify subplot and turn of axis
ax = plt.subplot(n_filters, 3, ix)
ax.set_xticks([])
ax.set_yticks([])
# plot filter channel in grayscale
plt.imshow(f[:, :, j], cmap='gray')
ix += 1
# show the figure
plt.show()
If we convolve an input image with these filters, the resultant images are called feature maps. These feature maps represent what aspects of the image are important do decide if its a cat or a dog. Lets use the same example image as above and apply all the 16 filters to it and visualize the feature maps.
# Example image
plt.figure()
plt.imshow(img)
plt.axis("off")
plt.title("Input image (original)")
Create a submodel that is derived from the original model, that return the output of the first convolutional layer indexed at 3.
print("Total layers: ", len(loaded_model.layers))
print("Convolutional layers: Name, shape")
for i,layer in enumerate(loaded_model.layers):
# check for convolutional layer
if 'conv' not in layer.name:
continue
# get filter weights
filters, biases = layer.get_weights()
print("Index: ", i, "| Name of the layer: ", layer.name, "| Shape: ", filters.shape)
# redefine model to output right after the last hidden layer
layer_idx = 3
submodel = Model(inputs=loaded_model.inputs, outputs=loaded_model.layers[layer_idx].output)
There are total 16 filters.
# get feature map for first hidden layer
feature_maps = submodel.predict(img_array)
# plot all 64 maps in an 8x8 squares
square = 4
ix = 1
plt.figure()
for _ in range(square):
for _ in range(square):
# specify subplot and turn of axis
ax = plt.subplot(square, square, ix)
ax.set_xticks([])
ax.set_yticks([])
# plot filter channel in grayscale
plt.imshow(feature_maps[0, :, :, ix-1], cmap='gray')
ix += 1
# show the figure
plt.show()
Note some of the features represent the edges, eyes, texture, outlines of the ears or simply the contrast of the image.
print("Total layers: ", len(loaded_model.layers))
print("Convolutional layers: Name, shape")
for i,layer in enumerate(loaded_model.layers):
# check for convolutional layer
if 'conv' not in layer.name:
continue
# get filter weights
filters, biases = layer.get_weights()
print("Index: ", i, "| Name of the layer: ", layer.name, "| Shape: ", filters.shape)
# redefine model to output right after the last hidden layer
layer_idx = 15
submodel = Model(inputs=loaded_model.inputs, outputs=loaded_model.layers[layer_idx].output)
There are total 64 filters.
# get feature map for first hidden layer
feature_maps = submodel.predict(img_array)
# plot all 64 maps in an 8x8 squares
square = 8
ix = 1
plt.figure(figsize=(10,10))
for _ in range(square):
for _ in range(square):
# specify subplot and turn of axis
ax = plt.subplot(square, square, ix)
ax.set_xticks([])
ax.set_yticks([])
# plot filter channel in grayscale
plt.imshow(feature_maps[0, :, :, ix-1], cmap='gray')
ix += 1
# show the figure
plt.show()
print("Total layers: ", len(loaded_model.layers))
print("Convolutional layers: Name, shape")
for i,layer in enumerate(loaded_model.layers):
# check for convolutional layer
if 'conv' not in layer.name:
continue
# get filter weights
filters, biases = layer.get_weights()
print("Index: ", i, "| Name of the layer: ", layer.name, "| Shape: ", filters.shape)
# redefine model to output right after the last hidden layer
layer_idx = 19
submodel = Model(inputs=loaded_model.inputs, outputs=loaded_model.layers[layer_idx].output)
There are total 256 filters.
# get feature map for first hidden layer
feature_maps = submodel.predict(img_array)
# plot all 64 maps in an 8x8 squares
square = 16
ix = 1
plt.figure(figsize=(10,10))
for _ in range(square):
for _ in range(square):
# specify subplot and turn of axis
ax = plt.subplot(square, square, ix)
ax.set_xticks([])
ax.set_yticks([])
# plot filter channel in grayscale
plt.imshow(feature_maps[0, :, :, ix-1], cmap='gray')
ix += 1
# show the figure
plt.show()
At this stage the features start becoming more and more abstract, since these features are derived from the feature maps pass on from the previous layer. From these images its hard to tell if the network saw a cat or not!
print(feature_maps.shape)